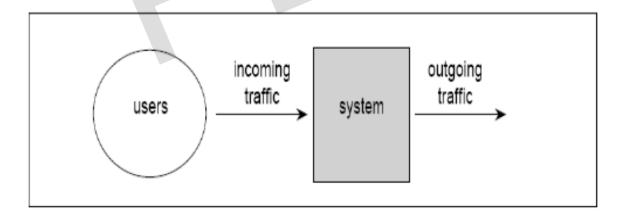


Konsep dan Teori Trafik

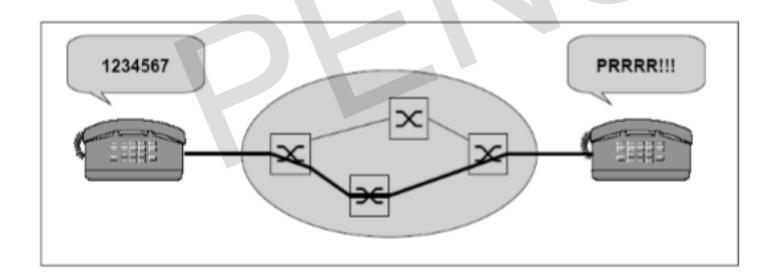
Prima Kristalina


Lab. Komunikasi Digital – E107

Politeknik Elektronika Negeri Surabaya (PENS) (2016)

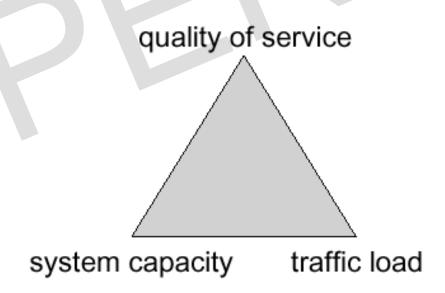
Trafik - Point of View

- Trafik dibangkitkan oleh pengguna sistem
- Sistem melayani (mengolah) trafik yang masuk
- Trafik dapat berupa panggilan yang harus disambungkan pada jaringan telepon, paket yang harus dirutekan pada jaringan data, request untuk web server dsb.

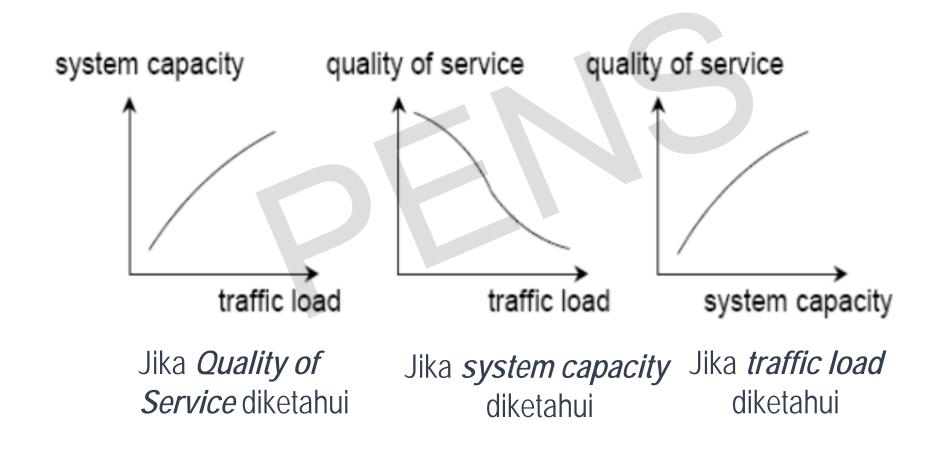


Telephone call

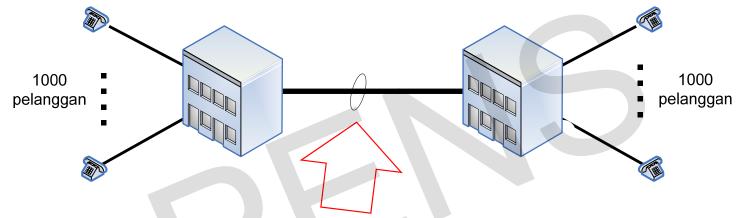
Trafik → Panggilan Telepon


System → Telephone Network

Quality of Service (QoS) -> Kemungkinan panggilan sampai tujuan



Tujuan Mempelajari Teori Trafik


- Memberikan gambaran tentang hubungan tiga faktor yang mempengaruhi suatu sistem telekomunikasi:
 - Quality of Service
 - Beban trafik (Traffic Load)
 - Kapasitas system (Traffic Capacity)

Trade-Off antara 3 factor yang mempengaruhi kualitas telekomunikasi

Ilustrasi diperlukannya rekayasa trafik di dalam penggelaran jaringan

- Agar komunikasi antar pelanggan dapat selalu dilakukan, maka idealnya perlu disediakan 1000 saluran antar pelanggan (ditambah resource pada sentral)
- Tetapi ini tidak ekonomis karena di dalam kenyataan sangat jarang terjadi seluruh pelanggan berbicara pada saat yang bersamaan → tidak efisien dari sisi penyediaan jaringan
- Namun, apabila hanya disediakan 1 saluran maka layanan menjadi tidak memadai → banyak call losses / blocking

Rekayasa Trafik dapat digunakan untuk menentukan jumlah saluran yang ekonomis namun dapat memberikan tingkat layanan yang memuaskan pelanggan

Berbagai Jenis Informasi dan Karakteristiknya

1. Voice

- Delay sensitive
- Harus dikirimkan secara real time

2. Data

- Tidak delay sensitive
- 3. Video
 - Serupa dengan voice

Beda Penanganan Informasi Dulu dan Sekarang

DULU

- Informasi beda, jaringan beda
 - Contoh: PSTN untuk voice, LAN untuk data

SEKARANG

- Beragam informasi diangkut pada jaringan yang sama
 - Contoh: Voice+web access
 +video streaming pada IPbased network (Internet)

Teori Trafik

- Secara umum trafik dapat diartikan sebagai perpindahan informasi dari satu tempat ke tempat lain melalui jaringan telekomunikasi.
- Besaran dari suatu trafik telekomunikasi diukur dengan satuan waktu, sedangkan nilai trafik dari suatu kanal adalah lamanya waktu pendudukan pada kanal tersebut.

Besaran Trafik

 Volume Trafik, didefinisikan sebagai jumlah total waktu pendudukan dari sebuah panggilan.

$$V = \int_{t=0}^{T} J(t)dt$$

T = jumlah periode pengamatan J(t) = jumlah kanal yang diduduki saat t

• Intensitas Trafik didefinisikan sebagai jumlah total waktu pendudukan dalam suatu selang pengamatan tertentu (per satuan waktu).

$$A = \frac{\text{Volume Trafik}}{T} = \frac{V}{T}$$

Contoh Penyajian Volume Trafik

Pengertian Intensitas trafik (dalam Erlang)

- 1. Rata-rata banyaknya percakapan terjadi bersamaan selama satu jam
- Rata-rata banyaknya percakapan yang terjadi dalam waktu yang sama dengan waktu pendudukan ratarata
- 3. Waktu keseluruhan dalam jam untuk membawa percakapan

Contoh Menghitung Intensitas Trafik:

Suatu berkas saluran terdiri dari 4 saluran. Dalam satu jam (jam sibuk) terjadi:

sal 1 : diduduki seluruhnya 0,25 jam

sal 2 : diduduki seluruhnya 0,5 jam

sal 3 : diduduki seluruhnya 0,25 jam

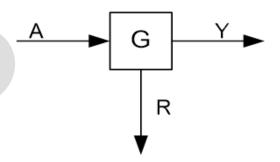
sal 4 : diduduki seluruhnya 0,5 jam

Hitung Intensitas Trafiknya

• Jawab:
$$A = \frac{0,25+0,5+0,25+0,5}{1} = 1,5 \text{ jam/jam}$$

Istilah pada Teori Trafik

1. Offered Traffic (A)


Trafik yang ditawarkan atau yang mau masuk ke jaringan.

2. Carried Traffic (Y)

Trafik yang dimuat atau yang mendapat saluran.

3. Lost Traffic (R)

Trafik yang gagal atau yang tidak mendapat saluran

Model System untuk Menangani Trafik

Pure Loss System

• Jika Sistem telah penuh maka panggilan berikutnya yang datang ditolak

Waiting/Queueing System

• Jika sistim telah penuh, panggilan yang datang berikutnya akan diantrikan pada sistim antrian. Tidak ada panggilan yang ditolak

Pure Loss System

Waiting/Queueing System

Satuan Trafik

- 1 Erlang = 1 TU (Traffic Unit)
 - = 36 CCS (Cent Call Seconds)
 - = 36 HCS (Hundred Call Seconds)
 - = 36 UC (Unit Calls)
 - = 30 EBHC (Equated Busy Hour Call)

Untuk menggambarkan ukuran kesibukan digunakan istilah " *Erlang* ".

Agner K. Erlang

Born: 1 Jan 1878 in Lonborg (near Tarm), Jutland, Denmark Died: 3 Feb 1929 in Copenhagen, Denmark

Pengertian **1 Erlang** adalah pendudukan sebuah saluran secara terus menerus selama satu jam

Perhitungan Offered Traffic

$$A = \frac{\lambda . h}{T}$$

A=Intensitas Trafik (dalam Erlang)

 λ =Rata-rata banyaknya panggilan datang dalam waktu T (laju trafik) H=waktu pendudukan rata-rata

Rumus diatas jika ditinjau dari satuan : Erlang = (Call/jam) x Jam

Contoh Soal 1

Sebuah sentral menerima rata-rata 2400 panggilan baru di dalam selang waktu 1 jam, dan rata-rata pendudukan adalah 5 menit.

Hitung Offered Traffic nya.

• Jawab:

```
I = 2400 \text{ call/jam} = 2400 \text{ call/}60 \text{ menit}
h = 5 \text{ menit}
```

$$A = I.h/T$$

= 2400x5/60 = 200 Erlang (E)

Contoh Soal 2

Pada jam sibuk, sebuah perusahaan memiliki rata-rata 120 outgoing call dengan waktu pendudukan rata-rata 2 menit dan 200 incoming call dengan waktu pendudukan rata-rata 3 menit.

Tentukan:

Outgoing traffic, Incoming traffic dan total traffic?

Jawab

- 1. Outgoing Traffic = 120x2/60 = 4E
- 2. Incoming Trafic = 200x3/60 = 10E
- 3. Total Traffic = 4+10=14E

Latihan Soal

- 1. Secara rata-rata selama jam sibuk (busy hour) sebuah perusahaan menghasilkan rata-rata 300 outgoing call dalam 3 menit. Perusahaan tersebut juga menerima 100 incoming call dalam 2 menit. Hitunglah
 - (1) Outgoing Traffic (2) Incoming Traffic (3) Traffic total
- 2. Pengukuran trafik pada sebuah sentral telepon dalam 1 jam menghasilkan data sbb:

Percakapan 15 menit : 4 kali

Percakapan 5 menit : 7 kali

Percakapan 8 menit : 15 kali

Percakapan 20 menit : 5 kali

Percakapan 30 menit : 2 kali

Hitunglah:

- a. Berapa volume trafik yang ditangani sentral tersebut pada 1 jam tersebut?
- b. Berapa laju trafiknya (λ) ?

3. Dalam pengamatan kinerja sentral terdapat data volume trafik sebagai berikut:

Hari/Jam	9.00-9.30	9.30-10.00	10.00-10.30	10.30-11.00	11.00-11.30
Senin	7	8	9	8	9
Selasa	8	8	7	8	8
Rabu	7	9	10	9	8
Kamis	9	8	8	8	7
Jumat	10	10	8	7	6

- Hitung volume trafik pada hari Selasa dan Jumat jam 9.00 sampai 10.30
- Hitung jam tersibuk dari seluruh hari yang ada
- Berapa intensitas trafik pada jam 11.00-11.30 pada seluruh hari?

Blocking

- Dalam model system Pure Loss, beberapa panggilan akan ditolak.
- Panggilan akan ditolak apabila jumlah saluran yang diduduki (n) sudah penuh.
- Call Blocking adalah salah satu parameter yang akan menentukan Quality of Service dari sebuah sistim komunikasi.
- Probabilitas Blocking adalah sebuah nilai kemungkinan sebuah panggilan tertolak karena server sedang sibuk digunakan.

Definisi dan Konsep Blocking

- Blocking adalah sebuah kemampuan sistim untuk menolak melayani panggilan karena kanal yang tersedia sudah terisi.
- Besarnya jumlah panggilan tidak sebanding dengan jumlah kanal yang tersedia

$$P_b = \frac{A^{N/N!}}{\sum_{k=0}^{N} A^{k/k!}}$$

Pb = Probabilitas Blocking yang terjadi

A = Intensitas trafik

N = jumlah total saluran

K = jumlah saluran yang dipakai

Persamaan Blocking pada Teori Trafik

1. Offered Traffic (A)

$$A = Y + R = \lambda.h$$

2. Carried Traffic (Y)

$$Y = \lambda \left(1 - B_c \right) h$$

3. Lost Traffic (R)

$$R = \lambda B_c.h$$

Grade of Service:

Rasio panggilan yang gagal terhadap total panggilan

Analisa Teletrafik

• Diketahui:

n=Jumlah saluran/kanal \rightarrow Kapasitas Sistim

A=Offered Trafik → Trafik Load

Bc = Probabilitas seluruh saluran diduduki → Quality of Service

Hubungan kuantitatif antara Kapasitas Sistim, Trafik Load dan QoS dinyatakan dalam *Erlang's Blocking Formula*

Erlang's Blocking Formula

$$B_c = Erl(n, A) = \frac{A^n/n!}{\sum_{i=0}^n \frac{A^i}{i!}}$$

Erlang's Formula Erlang's B Formula Erlang's Loss Formula Erlang's First Formula

Contoh Soal 3:

Sebuah sistim sentral memiliki 4 buah kanal, dan trafik masuk sebesar 2 Erlang. Hitung Probabilitas Call Blocking nya.

$$B_{c} = \text{Erl}(4,2) = \frac{\frac{2^{4}}{4!}}{1 + 2 + \frac{2^{2}}{2!} + \frac{2^{3}}{3!} + \frac{2^{4}}{4!}} = \frac{\frac{16}{24}}{1 + 2 + \frac{4}{2} + \frac{8}{6} + \frac{16}{24}} = \frac{2}{21} \approx 9.5\%$$

Jika jumlah kanal ditambah menjadi 6 kanal, berapa Probabilitas Call Blocking nya?

$$B_c = Erl(6,2) = \frac{2^6/6!}{1 + 2 + 2^2/2! + 2^3/3! + 2^4/4! + 2^5/5! + 2^6/6!} = 1,196\%$$

Grade of Service

- GoS adalah angka dalam percent yang menyatakan rasio panggilan yang gagal/ dibuang terhadap total panggilan yang datang (offered)
- GoS adalah probabilitas panggilan yang ditolak (diblok) selama jam sibuk
- Probability jumlah gagal dalam 100 kali (rata rata).
- GoS sSama dengan <u>factor blocking</u> (Bc)

$$GOS = \frac{\text{jumlah panggilan yang gagal(losses)}}{\text{jumlah panggilan total (offered)}}$$

Quality of Service

 Rasio dari panggilan yang berhasil dilayani terhadap panggilan yang datang (offered)

$$QoS = \frac{\text{jumlah panggilan yang sukses(carried)}}{\text{jumlah panggilan total(offered)}}$$

Contoh Soal 3:

Sebuah sentral terdiri dari 4 trunk dengan 9 call dan waktu pendudukan rata-rata 20 menit pada jam sibuk. Hitunglah:

- 1. Grade of Service
- 2. Probabilitas blocking jika hanya 2 trunk dipakai
- 3. Quality of Service

• Jawab:

1.
$$A = \frac{9x20}{60} = 3E$$
 -> $GoS = \frac{A^{N/N!}}{\sum_{k=0}^{N} A^{k/k!}} = \frac{3^4/4!}{1+2+2^2/2!+2^3/3!+2^4/4!} = 17,16\%$

2.
$$B_c = \frac{3^2 / 2!}{1 + 2 + 2^2 / 2!} = 0.9$$

3.
$$QoS = 1 - GoS = 1 - 0.1716 = 0.8284 = 82.84\%$$

Latihan Soal

- 1. Sebuah grup terdiri dari 6 trunk memiliki trafik 4E. Hitunglah
 - Grade of Service
 - Probabilitas blocking untuk 2 trunk saja yang digunakan
 - Probabilitas hanya 3 trunk yang bebas
 - Probabilitas paling banyak 3 trunk yang bebas
- 2. Sebuah grup memiliki 20 trunk dengan Grade of Service = 0,01 jika menerima trafik 12 E. Hitunglah:
 - Berapa besar perbaikan GoS jika ditambahkan 1 trunk lagi pada grup tersebut
 - Berapa besar penurunan GoS jika diambil 1 trunk dari grup tersebut